Giải bài tập 26 trang 45 sbt toán 7 tập 1 cánh diều

Bài 26: Cho hai số thực a, b ($a\neq 0, b\neq 0, a\neq b$). Gọi M= $\sqrt{19} \times \left | a \right | \times b^{2} \times (a-b)^{2}$. Chứng tỏ rằng M là số dương.

Câu trả lời:

Ta có: $\sqrt{19}$ > 0 và$\left | a \right |$ > 0, $(a - b)^{2}$ > 0 với mọi số thực a, b thỏa mãn $a\neq 0, b\neq 0, a\neq b$. Do đó $\sqrt{19} \times \left | a \right | \times b^{2} \times (a-b)^{2}$ > 0.

Vậy M là số dương.

Xem thêm các môn học

Giải SBT Toán 7 tập 1 cánh diều


Copyright @2024 - Designed by baivan.net