HĐ 2: Gọi $\widehat{B_{2}}$là góc đối đỉnh với $\widehat{cBb}$
a. Đo cặp góc so le trong $\widehat{B_{2}}$ và $\widehat{cAa}$ ta sẽ có $\widehat{B_{2}}$ = $\widehat{cAa}$
b. Đo cặp góc đồng vị $\widehat{cAa}$ và $\widehat{cBb}$ ta có : $\widehat{cAa}$ = $\widehat{cBb}$
Luyện tập 2:
1.
- Vì $\widehat{AMN}$ và $\widehat{ABC}$ là 2 góc đồng vị => $\widehat{AMN} = $\widehat{ABC}$ =$60^{\circ}$
- Lại có $\widehat{AMN}$ và $\widehat{BMN}$ là 2 góc kề bù => $\widehat{AMN}$ + $\widehat{BMN}$ = $180^{\circ}$=> $\widehat{BMN}$= $180^{\circ}$- $\widehat{AMN}$= $180^{\circ}$- $60^{\circ}$ = $120^{\circ}$
Tương tự :
$\widehat{ANM}$ và $\widehat{ACB}$ là 2 góc đồng vị => $\widehat{ANM} = $\widehat{ACB}$ .
Mặt khác $\widehat{ANM}$ và $\widehat{MNC}$ là 2 góc kề bù => $\widehat{ANM}$ + $\widehat{MNC}$ = $180^{\circ}$
=>$\widehat{ACB}$ + $\widehat{MNC}$ = $180^{\circ}$=> $\widehat{ACB}$= $180^{\circ}$- $\widehat{MNC}$ = $180^{\circ}$ - $150^{\circ}$ = $30^{\circ}$
2. Vì xx’//yy’ nên $\widehat{x'AB}$ = $\widehat{ABy}$ ( 2 góc so le trong)
Mà zz’⊥ xx’ nên $\widehat{x'AB}$ = $90^{\circ}$ => $\widehat{ABy}$ = $90^{\circ}$ => zz’⊥ yy’