Giải câu 7.7 trang 41 toán 10 tập 2 kết nối tri thức

7.7. Xét vị trí tương đối giữa các cặp đường thẳng sau:

a) $\Delta _{1}:3\sqrt{2}x+\sqrt{2}y-\sqrt{3}=0$ và $\Delta _{2}: 6x+2y-\sqrt{6}=0$ 

b) $d _{1}: x-\sqrt{3}y+2=0$ và $d _{2}: \sqrt{3}x-3y+2=0$ 

c) $m _{1}: x-2y+1=0$ và $m _{2}: 3x+y-2=0$ 

Câu trả lời:

a) $\Delta _{1}$ có vecto pháp tuyển: $\overrightarrow{n_{1}}(3\sqrt{2};\sqrt{2})$

$\Delta _{2}$ có vecto pháp tuyển: $\overrightarrow{n_{2}}(6; 2)$

Ta có $\overrightarrow{n_{1}}$ và $\overrightarrow{n_{2}}$ cùng phương, nên $\Delta _{1}$ và $\Delta _{2}$ song song hoặc trùng nhau.

Ta có: $3\sqrt{2}x+\sqrt{2}y-\sqrt{3}=0$ $\Leftrightarrow $ $3\sqrt{2}x+\sqrt{2}y-\sqrt{3}=0$

Vậy  $\Delta _{1}$ và $\Delta _{2}$ trùng nhau.

b) Ta có: $x-\sqrt{3}y+2=0$ $\Leftrightarrow $ $\sqrt{3}x-3y+2\sqrt{3}=0$ 

Mà $\sqrt{3}x-3y+2\sqrt{3} \neq \sqrt{3}x-3y+2$ nên $d _{1}$ và $d _{2}$ song song.

c) $m _{1}$ có vecto pháp tuyến: $\overrightarrow{n_{1}}(1;-2)$

$m _{2}$ có vecto pháp tuyến: $\overrightarrow{n_{2}}(3;1)$

Ta có $\overrightarrow{n_{1}}$ và $\overrightarrow{n_{2}}$ không cùng phương, nên $d _{1}$ và $d _{2}$ cắt nhau.

Xem thêm các môn học


Copyright @2024 - Designed by baivan.net