Giải bài tập 9.15 trang 56 sbt toán 7 tập 2 kết nối tri thức

Bài 9.15. Gọi M là trung điểm của cạnh BC của tam giác ABC và D là điểm sao cho M là trung điểm của AD. Đường thẳng qua D và trung điểm của AB cắt BC tại U, đường thẳng qua D và trung điểm của AC cắt BC tại V. Chứng minh BU = UV = VC.

Câu trả lời:

Xét tam giác ABD có:

M là trung điểm của AD, DU đi qua trung điểm AB

=> BM và DU là 2 đường trung tuyến của tam giác

Mà BM cắt DU tại U

=> U là trọng tâm tam giác ABD.

=> $BU=2UM=\frac{2}{3}BM$ (1)

Xét tam giác ACD:

M là trung điểm của AD, DV đi qua trung điểm AC

=> CM và DV là 2 đường trung tuyến của tam giác

Mà CM cắt DV tại V

=> V là trọng tâm tam giác ACD.

=> $CV=2MV=\frac{2}{3}MC$ (2)

Mà M là trung điểm BC

=> MB = MC

Lại có: $UV = UM + MV = \frac{1}{3}BM+\frac{1}{3}CM=\frac{1}{3}BM+\frac{1}{3}BM=\frac{2}{3}BM$ (3)

Từ (1), (2) và (3) suy ra:

BU = UV = VC. 

Xem thêm các môn học

Giải SBT Toán 7 tập 2 kết nối tri thức


Copyright @2024 - Designed by baivan.net