Tải giáo án dạy thêm (giáo án buổi 2) Toán 11 cánh diều bản mới nhất bài 2: Hai đường thẳng song song trong không gian. Bộ giáo án dạy thêm biên soạn ôn tập lí thuyết và nhiều dạng bài tập ngữ liệu ngoài sách giáo khoa để giáo viên ôn tập kiến thức cho học sinh. Tài liệu tải về bản word, chuẩn mẫu công văn mới, có thể tùy ý chỉnh sửa được. Mời thầy cô kéo xuống tham khảo
Rõ nét về file powerpoint trình chiếu. => Xem thêm
Ngày soạn: .../.../...
Ngày dạy: .../.../...
Sau bài này học sinh sẽ:
- Ôn lại và củng cố kiến thức hai đường thẳng song song trong không gian:
Năng lực chung:
Năng lực riêng:
- Giáo viên: Giáo án, sách giáo khoa, phiếu học tập.
- Học sinh: Vở, nháp, bút.
III. TIẾN TRÌNH DẠY HỌC
- GV thực hiện chia lớp thành 2 nhím và đặt câu hỏi cho mỗi nhóm HS:
+ Nhóm 1: Cho hai đường thẳng phân biệt a, b và mặt phẳng . Giả sử a // b; b // . Khi đó:
+ Nhóm 2: Cho hai đường thẳng phân biệt a, b và mặt phẳng . Giả sử a // , . Khi đó:
- GV nhận xét, dẫn dắt HS vào nội dung ôn tập bài “hai đường thẳng song song trong không gian”.
HOẠT ĐỘNG CỦA GV - HS |
DỰ KIẾN SẢN PHẨM |
Bước 1: GV chuyển giao nhiệm vụ học tập - GV đặt câu hỏi và cùng HS nhắc lại kiến thức phần lí thuyết cần ghi nhớ trong bài “hai đường thẳng song song trong không gian” trước khi thực hiện các phiếu bài tập. Bước 2: Học sinh thực hiện nhiệm vụ học tập - HS tiếp nhận nhiệm vụ, ghi nhớ lại kiến thức, trả lời câu hỏi. Bước 3: Báo cáo kết quả hoạt động, thảo luận Đại diện một số HS đứng tại chỗ trình bày kết quả. Bước 4: Đánh giá kết quả thực hiện nhiệm vụ học tập GV đưa ra nhận xét, đánh giá, chuẩn kiến thức. |
1. Vị trí tương đối của hai đường thẳng phân biệt - Cho hai đường thẳng a và b phân biệt trong không gian. Khi đó chỉ xảy ra một trong các trường hợp sau: + Trường hợp 1: Có một mặt phẳng chứa a và b. Khi đó ta nói a và b đồng phẳng. + Trường hợp 2: Không có mặt phẳng nào chứa a và b. Khi đó ta nói a và b chéo nhau, hay a chéo với b. Khi hai đường thẳng a và b (phân biệt) đồng phẳng, ta đã biết có hai khả năng xảy ra: + a và b có một điểm chung duy nhất I. Ta nói a và b cắt nhau tại I và kí hiệu . Ta còn có thể viết + a và b không có điểm chung. Ta nói a và b song song với nhau và kí hiệu là a // b * Nhận biết: Cho hai đường thẳng song song a và b. Có suy nhất một mặt phẳng chứa hai đường thẳng đó, kí hiệu là mp(a, b). 2. Tính chất a) Định lí 1: Trong không gian, qua một điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho. b) Định lí 2: Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy, hoặc đôi một song song với nhau. * Hệ quả: Nếu hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) sũng song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó. c) Định lí 3: Trong không gian, hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau. |
Nhiệm vụ 1: GV phát phiếu bài tập, nêu phương pháp giải, cho học sinh làm bài theo nhóm bằng phương pháp khăn trải bàn.
PHIẾU BÀI TẬP SỐ 1 DẠNG 1: Chứng minh đường thẳng song song hoặc đồng quy Phương pháp giải: Nếu không có sẵn đường thẳng b trong mặt phẳng (P) thì ta tìm đường thẳng b bằng cách chọn một mặt phẳng (Q) chứa a và cắt (P), giao tuyến của (P) và (Q) chính là đường thẳng b cần tìm. Bài 1. Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi O và O’ lần lượt là tâm của hai hình bình hành ABCD và ABEF. a) Chứng minh OO’ song song với các mặt phẳng (ADF) và (BCE) b) Gọi G và G’ lần lượt là trọng tâm các tam giác ABD và ABF. Chứng minh GG’ // (DCEF) Bài 2. Cho tứ diện ABCD, G là trọng tâm tam giác ABD. M là điểm trên cạnh BC sao cho MB = 2MC. Chứng minh BG // (ACD) Bài 3. Cho tứ diện ABCD. Gọi M, N lần lượt là trọng tâm của các tam giác ABC và BCD. Chứng minh rằng MN // (ABD) và MN // (ACD) Bài 4. Cho tứ diện ABCD. Gọi M là một điểm bất kì trên cạnh BC; (a) là mặt phẳng qua M và song song với AB và CD, cắt các cạnh BD, AD, AC lần lượt tại N, P, Q. Chứng minh rằng MNPQ là hình bình hành. Bài 5. Cho hình chóp S.ABCD có đáy là ABCD là hình bình hành; F, G lần lượt là trung điểm của AB và CD. a. Chứng minh rằng FG song song với các mặt phẳng (SAD) và (SBC). b. Gọi E là trung điểm của SA. Chứng minh rằng SB, SC song song với mặt phẳng (FGE). Bài 6. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. (a) là mặt phẳng đi qua trung điểm M của cạnh SB, song song với cạnh AB, cắt các cạnh SA, SD, SC lần lượt tại Q, P và N. Hãy xác định hình tính của tứ giác MNPQ? |
Nâng cấp lên tài khoản VIP để tải tài liệu và dùng thêm được nhiều tiện ích khác
Giáo án dạy thêm Toán 11 cánh diều, giáo án buổi chiều Toán 11 cánh diều bài 2: Hai đường thẳng song song trong, giáo án dạy thêm Toán 11 cánh diều bài 2: Hai đường thẳng song song trong