Tải giáo án dạy thêm cực hay Toán 11 Cánh diều bài: Bài tập cuối chương IV

Tải giáo án dạy thêm (giáo án buổi 2) Toán 11 cánh diều bản mới nhất bài: Bài tập cuối chương IV. Bộ giáo án dạy thêm biên soạn ôn tập lí thuyết và nhiều dạng bài tập ngữ liệu ngoài sách giáo khoa để giáo viên ôn tập kiến thức cho học sinh. Tài liệu tải về bản word, chuẩn mẫu công văn mới, có thể tùy ý chỉnh sửa được. Mời thầy cô kéo xuống tham khảo

Web tương tự: Kenhgiaovien.com - tech12h.com - Zalo hỗ trợ: nhấn vào đây

Rõ nét về file powerpoint trình chiếu. => Xem thêm

Ngày soạn: .../.../...
Ngày dạy: .../.../...
BÀI TẬP CUỐI CHƯƠNG IV
Nhiệm vụ 1: GV phát phiếu bài tập, nêu phương pháp giải, cho học sinh làm bài theo nhóm bằng phương pháp khăn trải bàn.
PHIẾU BÀI TẬP SỐ 1
Bài 1. . Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớn là AB. Một mặt phẳng (P)quay quanh AB cắt các cạnh SC,SD tại các điểm tương ứng E,F.
a) Tìm tập hợp giao điểm I của AF và BE.
b) Tìm tập hợp giao điểm J của AE và BF.
Bài 2. Cho tứ diện ABDC. Hai điểm M,N lần lượt nằm trên hai cạnh AB và AC sao cho AM/AB≠AN/AC. Một mặt phẳng (P) thay đổi luôn chứa MN, cắt các cạnh CD và BD lần lượt tại E và F.
a) Chứng minh EF luôn đi qua một điểm cố định.
b) Tìm tập hợp giao điểm I của ME và NF.
c) Tìm tập hợp giao điểm J của MF và NE.
Bài 3. Cho hình chóp S.ABCD có đáy ABCD là một tứ giác lồi. Gọi M,N,E,F lần lượt là trung điểm của các cạnh bên SA,SB,SC và SD.
a) Chứng minh ME,NF,SO đồng qui (O là giao điểm của AC và BD).
b) Bốn điểm M,N,E,F đồng phẳng.
Bài 4. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Gọi M,N,E,F lần lượt là trọng tâm các tam giác SAB,SBC,SCD và SDA. Chứng minh:
a) Bốn điểm M,N,E,F đồng phẳng.
b) Ba đường thẳng ME,NF,SO đồng qui (O là giao điểm của AC và BD).
- HS hình thành nhóm, phân công nhiệm vụ, thảo luận, tìm ra câu trả lời.
- GV cho đại diện các nhóm trình bày, chốt đáp án đúng và lưu ý lỗi sai.
Gợi ý đáp án:
Bài 1.

a) Phần thuận:
Ta có I=AF∩BE⇒{█(&I∈AF@&I∈BE)┤, {█(&AF⊂(SAD)@&BE⊂(SBC) )┤
⇒F∈(SAD)∩(SBC).
Trong (ABCD) gọi H=AD∩BC⇒{█(&H∈AD@&H∈BC)┤
⇒{█(&H∈(SAD)@&H∈(SBC) )┤.
⇒SH=(SAD)∩(SBC)⇒I∈SH.
Giới hạn:
Khi E chạy đến C thì F chạy đến D và I chạy đến H.
Khi E chạy đến S thì F chạy đến S và I chạy đến S.
Phần đảo:
Lấy điểm I bất kì thuộc đoạn SH, trong (SAH)gọi F=SD∩AI, trong (SBH) gọi E=SH∩BI khi đó (ABEF) là mặt phẳng quay quanh AB cắt các cạnh SC,SD tại E,F và I là giao điểm của AF và BE.
Vậy tập hợp điểm I là đoạn SH.
b) Ta có J=AE∩BF⇒{█(&J∈AE@&J∈BF)┤⇒{█(&J∈(SAC)@&J∈(SBD) )┤⇒J∈(SAC)∩(SBD)Nhưng SO=(SAC)∩(SBD) nên J∈SO.
Khi E chạy đến chạy đến C thì F chạy đến D và J chạy đến O.
Khi E chạy đến S thì F chạy đến S và J chạy đến S.
Lập luận tương tự trên ta có tập hợp điểm J là đoạn SO.
Bài 2.

a) Trong (ABC) gọi K=MN∩BC thì K cố định và {█(&K∈MN@&K∈BC)┤⇒{█(&K∈(MNP)@&K∈(BCD) )┤" "
Lại có EF=(P)∩(BCD)⇒K∈EF Vậy EF luôn đi qua điểm K cố định
b) Phần thuận:
Trong (P) gọi I=ME∩NF⇒{█(&I∈ME⊂(MCD)@&I∈NF⊂(NBD) )┤
⇒I∈(MCD)∩(NBD).
Gọi O=CM∩BN⇒OD=(MCD)∩(NBD)⇒I∈OD
Giới hạn:
Khi E chạy đến C thì F chạy đến B và I chạy đến O
Khi Khi E chạy đến D thì F chạy đến D và I chạy đến D
Phần đảo:
Gọi I là điểm bất kì trên đoạn OD, trong (MCD) gọi E=MI∩CD, trong (NBD) gọi F=NI∩BD suy ra (MNEF) là mặt phẳng quay quanh MN căt các cạnh DB,DC tại các điểm E,F và I=ME∩NF.
Vậy tập hợp điểm I là đoạn OD.
c) Gọi J=MF∩NE⇒{█(&J∈MF⊂(ADB)@&J∈NE⊂(ACD) )┤ ⇒J∈(ADB)∩(ACD).
Mà AD=(ADC)∩(ADB).
Khi E chạy đến C thì F chạy đến B và J chạy đến A
Khi Khi E chạy đến D thì F chạy đến D và I chạy đến D
Từ đó ta có tập hợp điểm J là đường thẳng AD trừ các điểm trong của đoạn AD.
Bài 3.

a) Trong (SAC) gọi I=ME∩SO, dễ thấy I là trung điểm của SO, suy ra FI là đường trung bình của tam giác SOD.
Vậy FI//OD.
Tương tự ta có NI∥OB nên N,I,F thẳng hàng hay I∈NF.
Vậy minh ME,NF,SO đồng qui .
b) Do ME∩NF=I nên ME và NF xác định một mặt phẳng. Suy ra M,N,E,F đồng phẳng.
Bài 4.

a) Gọi M',N',E',F' lần lượt là trung điểm các cạnh AB,BC,CD và DA.
Ta có SM/SM'=2/3,SN/SN'=2/3⇒SM/SM'=SN/SN'
⇒MN∥M'N'" " (1).
Tương tự SE/SE'=SF/SF'⇒EF∥E'F'" " (2)
Lại có {█(&M'N'∥AC@&E'F'∥AC)┤⇒M'N'∥E'F' (3)
Từ (1),(2) và (3) suy ra MN∥EF. Vậy bốn điểm M,N,E,F đồng phẳng.
b) Dễ thấy M'N'E'F' cũng là hình bình hành và O=M'E'∩N'F'.
Xét ba mặt phẳng (M'SE'),(N'SF') và (MNEF) ta có :
(M'SE')∩(N'SF')=SO
(M'SE')∩(MNEF)=ME
(N'SF')∩(MNEF)=NF
ME∩NF=I.
Do đó theo định lí về giao tuyến của ba mặt phẳng thì ba đường thẳng ME,NF,SO đồng qui.

Nhiệm vụ 2: GV phát phiếu bài tập, cho học sinh nêu cách làm, GV đưa ra phương pháp giải và cho học sinh hoàn thành bài tập cá nhân và trình bày bảng.

Tải giáo án dạy thêm cực hay Toán 11 Cánh diều bài: Bài tập cuối chương IV

Nâng cấp lên tài khoản VIP để tải tài liệu và dùng thêm được nhiều tiện ích khác


Từ khóa tìm kiếm:

Giáo án dạy thêm Toán 11 cánh diều, giáo án buổi chiều Toán 11 cánh diều bài: Bài tập cuối chương IV, giáo án dạy thêm Toán 11 cánh diều bài: Bài tập cuối chương IV

Soạn giáo án dạy thêm Toán 11 Cánh diều (Bản word)


Copyright @2024 - Designed by baivan.net

Chat hỗ trợ
Chat ngay