Giải câu 8 trang 45 toán 10 tập 2 chân trời sáng tạo

8. Cho hai điểm A(1; 3), B(4; 2).

a) Tìm tọa độ điểm D nằm trên trục Ox sao cho DA = DB

b) Tính chu vi tam giác OAB.

c) Chứng minh rằng OA vuông góc với AB và từ đó tính diện tích tam giác OAB.

Câu trả lời:

a) D nằm trên trục Ox nên D(x; 0) $\Rightarrow$ $\vec{AD}$ = (x - 1; -3); $\vec{BD}$ = (x - 4; -2)

Ta có: DA = DB $\Rightarrow$ $(x - 1)^{2} + (-3)^{2}$ = $(x - 4)^{2} + (-2)^{2}$

$\Leftrightarrow$ $x^{2}$ - 2x + 1 + 9 = $x^{2}$ - 8x + 16 + 4 $\Leftrightarrow$ 6x = 10 $\Leftrightarrow$ x = $\frac{5}{3}$

Vậy D($\frac{5}{3}$; 0)

b) Ta có: $\vec{OA}$ = (1; 3); $\vec{OB}$ = (4; 2); $\vec{AB}$ = (3; -1)

Suy ra: OA = |$\vec{OA}$| = $\sqrt{1^{2} + 3^{2}}$ = $\sqrt{10}$

            OB = |$\vec{OB}$| = $\sqrt{4^{2} + 2^{2}}$ = $2\sqrt{5}$

            AB = |$\vec{AB}$| = $\sqrt{3^{2} + (-1)^{2}}$ = $\sqrt{10}$

$\Rightarrow$ Chu vi tam giác OAB là: OA + OB + AB = $\sqrt{10}$ +  $2\sqrt{5}$ + $\sqrt{10}$ = $2\sqrt{10}$ + $2\sqrt{5}$

c) Ta có: $\vec{OA}$.$\vec{AB}$ = 1. 3 + 3. (-1) = 0

$\Rightarrow$ $\vec{OA}$ $\perp$ $\vec{AB}$ 

$\Rightarrow$ $S_{OAB}$ = $\frac{1}{2}$OA. AB = $\frac{1}{2}$. $\sqrt{10}$. $\sqrt{10}$ = 5

Xem thêm các môn học

Giải toán 10 tập 2 chân trời sáng tạo

CHƯƠNG VII. BẤT PHƯƠNG TRÌNH BẬC HAI MỘT ẨN

HOẠT ĐỘNG THỰC HÀNH VÀ TRẢI NGHIỆM

 
 
 

Đia chỉ: Tòa nhà TH Office, 90 Khuất Duy Tiến, Thanh Xuân, Hà Nội
Điện thoại hỗ trợ: Fidutech - click vào đây
Chúng tôi trên Yotube
Cùng hệ thống: baivan.net - Kenhgiaovien.com - tech12h.com