Giải bài tập 15 trang 70 sbt toán 7 tập 2 kết nối tri thức

Bài 15. 

a) Chứng minh rằng nếu tam giác ABC có đường trung tuyến xuất phát từ A bằng một nửa cạnh BC thì tam giác đó vuông tại đỉnh A.

b) Cho đoạn thẳng AB. Hãy nêu một cách sử dụng kết quả của câu a để vẽ đường thẳng vuông góc với AB tại A (bằng thước và compa)

Câu trả lời:

a) Ta có MA = MB = MC (gt)

=> Tam giác MAB và MAC cân tại M

=> $\widehat{A1}=\widehat{B1}; \widehat{A2}=\widehat{C1}$

Xét tam giác ABC: $\widehat{A}+\widehat{B}+\widehat{C}=180^{\circ}$ (Tổng ba góc trong 1 tam giác)

=> $\widehat{A1}+\widehat{A2}+\widehat{B}+\widehat{C}=180^{\circ}$

=> $(\widehat{A1}+\widehat{B})+(\widehat{A2}+\widehat{C})=180^{\circ}$

=> $2\widehat{A1}+2\widehat{A2}=180^{\circ}$

=> $\widehat{A1}+\widehat{A2}=90^{\circ}$

b) Vẽ tam giác cân MAB rồi kéo dài BM về phía M đến điểm C sao cho MC = BM. Khi đó tam giác ABC vuông tại A. 

 

Xem thêm các môn học

Giải SBT Toán 7 tập 2 kết nối tri thức


Copyright @2024 - Designed by baivan.net