a) Đồ thị của hàm số đi qua điểm có toạ độ là (-1; -4) nên ta có a - b + c = -4 (1)
Đồ thị của hàm số đi qua điểm có toạ độ là (0; 3) nên ta có c = 3 (2)
Đồ thị của hàm số đi qua điểm có toạ độ là (1; -14) nên ta có a + b + c = -14 (3)
Thay (2) vào (1) và (3) ta có
Vậy a = -12, b = -5
Suy ra f(x) = $-12x^{2} - 5x + 3$
Có a = -12, $x_{1} = \frac{-3}{4}$ và $x_{2} = \frac{1}{3}$
Nên f(x) dương trong khoảng $(\frac{-3}{4}; \frac{1}{3})$ và âm trong các khoảng $(-\infty; \frac{-3}{4})$, $(\frac{1}{3}; +\infty)$
b) Đồ thị của hàm số đi qua điểm có toạ độ là (0; -2) nên ta có c = -2 (1)
Đồ thị của hàm số đi qua điểm có toạ độ là (2; 6) nên ta có 4a + 2b + c = 6 (2)
Đồ thị của hàm số đi qua điểm có toạ độ là (3; 13) nên ta có 9a + 3b + c = 13 (3)
Thay (1) vào (2) và (3) ta có
Vậy a = 1; b = 2
Suy ra f(x) = $x^{2} + 2x + 2$
Có a = 1 > 0, $x_{1} = -1 - \sqrt{3}$ và $x_{2} = -1 + \sqrt{3}$
Nên f(x) âm trong khoảng $(-1 - \sqrt{3}; -1 + \sqrt{3})$ và dương trong các khoảng $(-\infty; -1 - \sqrt{3})$, $(-1 + \sqrt{3}; +\infty)$
c) f(-5) = 33 nên ta có 25a - 5b + c = 33 (1)
f(0) = 3 nên ta có c = 3 (2)
f(2) =19 nên ta có 4a + 2b + c = 19 (3)
Thay (2) vào (1) và (3) ta có
Vậy a = 2, b= 4
Suy ra f(x) = $2x^{2} + 4x + 3$
Có a = 2 > 0, $\Delta = -2 <0$ nên f(x) dương với mọi x $\in \mathbb{R}$