Giải câu 5 trang 92 toán 10 tập 2 sách cánh diều

Câu 5. Tìm m sao cho đường thẳng 3x+4y+m=0 tiếp xúc với đường tròn

${{\left( x+1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}=4$

Câu trả lời:

Câu 5. $\Delta $: 3x+4y+m=0; (C): ${{\left( x+1 \right)}^{2}}+{{\left( y-2 \right)}^{2}}=4$

Đường tròn (C) có tâm I(-1;  2), bán kính R = 2.

Vì $\Delta $ là tiếp tuyến của đường tròn

=> $d(I;\Delta )=R$

$\Leftrightarrow \frac{\left| 3.(-1)+4.2+m \right|}{\sqrt{{{3}^{2}}+{{4}^{2}}}}=2$

$\Leftrightarrow \frac{\left| m+5 \right|}{5}=2$

$\Leftrightarrow \left| m+5 \right|=10$

$\Leftrightarrow \left[ \begin{align}& m+5=10 \\ & m+5=-10 \\\end{align} \right.$

$\Leftrightarrow \left[ \begin{align}& m=5 \\ & m=-15 \\\end{align} \right.$

Xem thêm các môn học

Giải toán 10 tập 2 cánh diều


Copyright @2024 - Designed by baivan.net