Giải toán 10 cánh diều bài 6: Tích vô hướng của hai vectơ

Giải bài 6: Tích vô hướng của hai vectơ. Tính diện tích tam giác. Định lí côsin và định lí sin trong tam giác - Sách cánh diều toán 10 tập 1. Phần dưới sẽ hướng dẫn giải bài tập và trả lời các câu hỏi trong bài học. Cách làm chi tiết, dễ hiểu. Hi vọng các em học sinh nắm tốt kiến thức bài học.

Luyện tập 1: Cho tam giác $A B C$ vuông tại $A$ có $\widehat{B}=30^{\circ}$, $A B=3 \mathrm{~cm}$. Tính $\overrightarrow{B A} \cdot \overrightarrow{B C} ; \overrightarrow{C A} \cdot \overrightarrow{C B}$

Trả lời:

Ta có: $AC=tan30^{\circ} \cdot AB = \sqrt{3}$

và $BC=\frac{AB}{cos30^{\circ}} = 2\sqrt{3}$

* $\overrightarrow{B A} \cdot \overrightarrow{B C} = |\overrightarrow{BA}| \cdot |\overrightarrow{BC}| \cdot cos(\overrightarrow{BA}, \overrightarrow{BC})=3 \cdot 2\sqrt{3} \cdot cos30^{\circ}=9$

* $\overrightarrow{C A} \cdot \overrightarrow{C B}=|\overrightarrow{CA}| \cdot |\overrightarrow{CB}| \cdot cos(\overrightarrow{CA}, \overrightarrow{CB})=\sqrt{3} \cdot 2\sqrt{3} \cdot cos60^{\circ}=3$

Luyện tập 2: Cho tam giác $A B C$ đều cạnh $a, A H$ là đường cao. Tính:

a) $\overrightarrow{C B} \cdot \overrightarrow{B A}$;

b) $\overrightarrow{A H} \cdot \overrightarrow{B C}$.

Trả lời:

a) Ta có: $(\overrightarrow{C B}, \overrightarrow{B A})=(\overrightarrow{C B}, \overrightarrow{CA})=60^{\circ}$

$\overrightarrow{C B} \cdot \overrightarrow{B A}=|\overrightarrow{C B}| \cdot |\overrightarrow{B A}| \cdot cos(\overrightarrow{C B}, \overrightarrow{B A})=a \cdot a \cdot cos60^{\circ}=\frac{a^2}{2}$

b) $\overrightarrow{A H} \cdot \overrightarrow{B C}=|\overrightarrow{A H}| \cdot |\overrightarrow{B C}| \cdot cos(\overrightarrow{A H}, \overrightarrow{B C})=|\overrightarrow{A H}| \cdot |\overrightarrow{B C}| \cdot cos90^{\circ}=0$

Luyện tập 3: Chứng minh rằng với hai vectơ bất kì $\vec{a}, \vec{b}$, ta có:

$(\vec{a}+\vec{b})^{2}=\vec{a}^{2}+2 \vec{a} \cdot \vec{b}+\vec{b}^{2}$

$(\vec{a}-\vec{b})^{2}=\vec{a}^{2}-2 \vec{a} \cdot \vec{b}+\vec{b}^{2}$

$(\vec{a}-\vec{b}) \cdot(\vec{a}+\vec{b})=\vec{a}^{2}-\vec{b}^{2}$

Trả lời:

$(\vec{a}+\vec{b})^{2}=(\vec{a}+\vec{b}) \cdot (\vec{a}+\vec{b})=\vec{a} \cdot \vec{a}+\vec{b} \cdot \vec{a} +\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{b} =\vec{a}^{2}+2 \vec{a} \cdot \vec{b}+\vec{b}^{2}$

$(\vec{a}-\vec{b})^{2}=(\vec{a}-\vec{b}) \cdot (\vec{a}-\vec{b})=\vec{a} \cdot \vec{a}-\vec{b} \cdot \vec{a} -\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{b} =\vec{a}^{2}-2 \vec{a} \cdot \vec{b}+\vec{b}^{2}$

$(\vec{a}-\vec{b}) \cdot(\vec{a}+\vec{b})=\vec{a} \cdot \vec{a}-\vec{b} \cdot \vec{a} +\vec{a} \cdot \vec{b}-\vec{b} \cdot \vec{b} =\vec{a}^{2}-\vec{b}^{2}$

Luyện tập 4: Sử dụng tích vô hướng, chứng minh định lí Pythagore: Tam giác $A B C$ vuông tại $A$ khi và chỉ khi $B C^{2}=A B^{2}+A C^{2}$.

Trả lời:

Ta có: $\overrightarrow{B C}^{2}=(\overrightarrow{A C}-\overrightarrow{A B})^{2}=\overrightarrow{A C}^{2}+\overrightarrow{A B}^{2}-2 \overrightarrow{A C} \cdot \overrightarrow{A B}$

Suy ra $B C^{2}=A B^{2}+A C^{2}-2 A B \cdot A C \cdot \cos (\overrightarrow{A B}, \overrightarrow{A C})$.

$=A B^{2}+A C^{2}-2 A B \cdot A C \cdot \cos A=A B^{2}+A C^{2}-2 A B \cdot A C \cdot \cos90^{\circ}$

$=A B^{2}+A C^{2}$ (Đpcm)

Trả lời: C. Nếu $\vec{a}, \vec{b}$ khác $\overrightarrow{0}$ và $(\vec{a}, \vec{b})<90^{\circ}$ thì $\vec{a} \cdot \vec{b}>0$.
Trả lời: a) $\vec{a} \cdot \vec{b}=|\vec{a}| \cdot |\vec{b}| \cdot cos (\vec{a}, \vec{b})= 3 \cdot 4 \cdot cos30^{\circ}=6\sqrt{3}$b) $\vec{a} \cdot \vec{b}=|\vec{a}| \cdot |\vec{b}| \cdot cos (\vec{a}, \vec{b})= 5 \cdot 6 \cdot cos120^{\circ}=-15$c) $\vec{a} \cdot \vec{b}=|\vec{a}| \cdot |\vec{b}| \cdot...
Trả lời: a) $\overrightarrow{A B} \cdot \overrightarrow{A C}= |\overrightarrow{AB}| \cdot |\overrightarrow{AC}| \cdot cos(\overrightarrow{AB}, \overrightarrow{AC})=a \cdot a \cdot cos 45^{\circ}=\frac{a^2\sqrt{2}}{2}$b) $\overrightarrow{A C} \cdot \overrightarrow{B D}=|\overrightarrow{AC}| \cdot |\...
Trả lời: $A B^{2}+\overrightarrow{A B} \cdot \overrightarrow{B C}+\overrightarrow{A B} \cdot \overrightarrow{C A}=A B^{2}+\overrightarrow{A B} \cdot (\overrightarrow{B C}+ \overrightarrow{C A})=A B^{2}+\overrightarrow{A B} \cdot \overrightarrow{BA}$$=A B^{2}+|\overrightarrow{A B}| \cdot |\overrightarrow{BA...
Trả lời: a) $\overrightarrow{A B} \cdot \overrightarrow{A H}=(\overrightarrow{AC}+\overrightarrow{CB}) \cdot \overrightarrow{A H}=\overrightarrow{AC}\cdot \overrightarrow{A H}+\overrightarrow{CB} \cdot \overrightarrow{A H}=\overrightarrow{A C} \cdot \overrightarrow{A H}$ (do $AH$ vuông góc với $CB$) b...
Trả lời: Tốc độ mới của máy bay là: $\sqrt{700^2 + 40^2 + 2 \cdot 700 \cdot 40 \cdot cos45^{\circ}} \approx 728,8$ (km/h)
Trả lời: a) $\overrightarrow{A B} \cdot \overrightarrow{A C}=2 \cdot 3 \cdot cos120=-3$b)$\overrightarrow{A M} = \overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AB}+\frac{1}{2}\overrightarrow{BC}=\overrightarrow{AB}+\frac{1}{2}(\overrightarrow{AC}-\overrightarrow{AB})=\frac{1}{2}(\overrightarrow{AC...
Tìm kiếm google: Tìm kiếm google: Giải toán 10 Cánh Diều, Giải Cánh Diều Toán 10 tập 1, Giải Toán 10 Cánh Diều tập 1 bài 6, Giải bài Tích vô hướng của hai vectơ

Xem thêm các môn học

Giải toán 10 tập 1 cánh diều


Copyright @2024 - Designed by baivan.net