Giải bài tập 5 trang 98 toán 10 tập 1 cánh diều

Bài 5. Cho tam giác $A B C$. Chứng minh:

$A B^{2}+\overrightarrow{A B} \cdot \overrightarrow{B C}+\overrightarrow{A B} \cdot \overrightarrow{C A}=0$

Câu trả lời:

$A B^{2}+\overrightarrow{A B} \cdot \overrightarrow{B C}+\overrightarrow{A B} \cdot \overrightarrow{C A}=A B^{2}+\overrightarrow{A B} \cdot (\overrightarrow{B C}+ \overrightarrow{C A})=A B^{2}+\overrightarrow{A B} \cdot \overrightarrow{BA}$

$=A B^{2}+|\overrightarrow{A B}| \cdot |\overrightarrow{BA}| \cdot cos(\overrightarrow{A B},\overrightarrow{BA})=A B^{2}-A B^{2}=0$

Xem thêm các môn học

Giải toán 10 tập 1 cánh diều


Copyright @2024 - Designed by baivan.net