Giải bài tập 7 trang 11 toán 10 tập 1 cánh diều

Bài 7. Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của mỗi mệnh đề phủ định đó:

a) $\forall x \in \mathbb{R}, x^{2} \neq 2 x-2$;

b) $\forall x \in \mathbb{R}, x^{2} \leq 2 x-1$;

c) $\exists x \in \mathbb{R}, x+\frac{1}{x} \geq 2$;

d) $\exists x \in \mathbb{R}, x^{2}-x+1<0$.

Câu trả lời:

a) Phủ định của mệnh đề "$\forall x \in \mathbb{R}, x^{2} \neq 2 x-2$" là mệnh đề "$\exists x \in \mathbb{R}, x^{2} = 2 x-2$". Mệnh đề sai vì $x^{2} - 2 x+2=(x-1)^2+1>0 \Rightarrow  x^{2} > 2 x-2$

b) Phủ định của mệnh đề "$\forall x \in \mathbb{R}, x^{2} \leq 2 x-1$" là mệnh đề "$\exists x \in \mathbb{R}, x^{2} > 2 x-1$". Mệnh đề đúng vì $x^{2} - 2 x+1=(x-1)^2 \geq 0$

c) Phủ định của mệnh đề "$\exists x \in \mathbb{R}, x+\frac{1}{x} \geq 2$" là mệnh đề "$\forall x \in \mathbb{R}, x+\frac{1}{x} < 2$". Mệnh đề sai vì với $x=1 \in \mathbb{R}$, ta có: $1+\frac{1}{1} = 2$.

d) Phủ định của mệnh đề "$\exists x \in \mathbb{R}, x^{2}-x+1<0$" là mệnh đề "$\forall x \in \mathbb{R}, x^{2}-x+1 \geq 0$". Mệnh đề đúng vì $x^{2}-x+1=(x-\frac{1}{2})^{2} +\frac{3}{4} \geq 0$

Xem thêm các môn học

Giải toán 10 tập 1 cánh diều


Copyright @2024 - Designed by baivan.net