Giải sách bài tập Toán học 11 Tập 1 Kết nối Bài 13: Hai mặt phẳng song song

Hướng dẫn giải Bài 13: Hai mặt phẳng song song SBT Toán 11 kết nối. Đây là sách bài tập nằm trong bộ sách "kết nối tri thức" được biên soạn theo chương trình đổi mới của Bộ giáo dục. Hi vọng, với cách hướng dẫn cụ thể và giải chi tiết học sinh sẽ nắm bài học tốt hơn.

4.29. Cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ bốn đường a, b, c, d đôi một song song và không nằm trong mặt phẳng (ABCD).

a) Chứng minh rằng hai mặt phẳng mp(a,b) và mp(c,d) song song với nhau.

b) Chứng minh rằng hai mặt phẳng mp(a,d) và mp(b,c) song song với nhau.

c) Một mặt phẳng cắt bốn đường thẳng a, b, c, d lần lượt tại A’, B’, C’, D’. Chứng minh rằng tứ giác A’B’C’D’ là hình bình hành.

Hướng dẫn trả lời:

Hướng dẫn trả lời:

a) Vì a//d nên a//mp(c, d).

Vì ABCD là hình bình hành nên AB//CD, do đó AB// mp(c, d).

Mặt phẳng (a, b) chứa hai đường thẳng a và AB cắt nhau tại A và cùng song song với mp(c, d).

Do đó, hai mặt phẳng mp(a,b) và mp(c,d) song song với nhau.

b) Vì a//b nên a//mp(b, c).

Vì ABCD là hình bình hành nên AD//BC, do đó AD// mp(b, c).

Mặt phẳng (a, d) chứa hai đường thẳng a và AD cắt nhau tại A và cùng song song với mp(b, c).

hai mặt phẳng mp(a,d) và mp(b,c) song song với nhau.

c) Vì mặt phẳng (a, b) song song với mặt phẳng (c, d) nên giao tuyến của mặt phẳng (A’B’C’D’) với hai mặt phẳng đó song song với nhau, tức là A’B’//C’D’.

Vì hai mặt phẳng mp(a,d) và mp(b,c) song song với nhau nên giao tuyến của mặt phẳng (A’B’C’D’) với hai mặt phẳng đó song song với nhau, tức là A’D’//C’B’.

Tứ giác A’B’C’D’ có: A’B’//C’D’, A’D’//C’B’ nên tứ giác A’B’C’D’ là hình bình hành.

4.30. Cho tứ diện ABCD và một điểm O nằm trong tam giác BCD. Gọi (P) là mặt phẳng qua O và song song với mặt phẳng (ABD)

a) Xác định giao tuyến của mặt phẳng (P) và mặt phẳng (BCD)

b) Xác định giao tuyến của mặt phẳng (P) và các mặt còn lại của tứ diện

Hướng dẫn trả lời:

Hướng dẫn trả lời:

a) Trong mặt phẳng (BCD), vẽ đường thẳng qua O và song song với BD cắt các cạnh BC, CD lần lượt tại E, F. 

Khi đó EF là giao tuyến của mặt phẳng (P) và mặt phẳng (BCD)

b) Trong mặt phẳng (ABC), vẽ EG // AB $(G \in AC)$

Khi đó EG là giao tuyến của mặt phẳng (P) và mặt phẳng (ABC)

Vậy FG là giao tuyến của mặt phẳng (P) và mặt phẳng (ACD)

4.31. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E là một điểm bất kì thuộc cạnh SA và (P) là mặt phẳng qua E song song với mặt phẳng (ABCD).

a) Xác định giao tuyến của mặt phẳng (P) và các mặt bên của hình chóp.

b) Hình tạo bởi các giao tuyến là hình gì? Giải thích vì sao.

Hướng dẫn trả lời:

Hướng dẫn trả lời:

a) Trong mặt phẳng (SAB), qua E kẻ đường thẳng song song với AB cắt SB tại F. Khi đó, EF là giao tuyến của mặt phẳng (P) và mặt phẳng (SAB).

Trong mặt phẳng (SBC), qua F kẻ đường thẳng song song với BC cắt SC tại G. Khi đó, FG là giao tuyến của mặt phẳng (P) và mặt phẳng (SBC).

Trong mặt phẳng (SCD), qua G kẻ đường thẳng song song với DC cắt SD tại H. Khi đó, GH là giao tuyến của mặt phẳng (P) và mặt phẳng (SCD).

Vì E vừa thuộc mặt phẳng (P) vừa thuộc mặt phẳng (SAD); H vừa thuộc mặt phẳng (P) vừa thuộc mặt phẳng (SAD) nên EH là giao tuyến của (P) và mặt phẳng (SAD)

b) Vì mp (ABCD)//mp (EFGH), EH là giao tuyến của mp (EFGH) và mp (SAD), AD là giao tuyến của mp (ABCD) và mp (SAD) nên EH//AB.

Vì EH//AD, AD//BC nên EH//BC

Mà FG//BC nên EH//FG

Vì EF//AB, AB//CD nên EF//DC

Mà HG//DC nên EF//HG

Tứ giác EFGH có: EF//GH, EH//FG nên tứ giác EFGH là hình bình hành.

4.32. Cho hình lăng trụ tứ giác ABCD.A’B’C’D’ có đáy ABCD là hình thang. Chứng minh rằng đáy A’B’C’D’ là hình thang.

Hướng dẫn trả lời:

Hướng dẫn trả lời:

Giả sử AB//CD

Các mặt ABB’A’ và CDD’C’ của hình lăng trụ là hình bình hành nên AB//A’B’, CD//C’D’

Do đó, A’B’//C’D’

Suy ra, đáy A’B’C’D’ là hình thang.

4.33. Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Chứng minh rằng sau điểm A, B, C, D, E, F là sáu đỉnh của một hình lăng trụ tam giác.

Hướng dẫn trả lời:

Hướng dẫn trả lời:

Vì AD//BC (do ABCD là hình bình hành) nên AD//mp (BCE), AF//BE (do ABEF là hình bình hành) nên AF//mp (BCE).

Mà AD và AF là hai đường thẳng cắt nhau cùng nằm trong mặt phẳng ADF. Do đó, mp (ADF) //mp (BCE).

Các đường thẳng AB, CD, EF đôi một song song với nhau.

4.34. Cho hình hộp ABCD.A’B’C’D’. Một mặt phẳng (P) cắt các cạnh AD, BC, B’C’, A’D’ lần lượt tại E, F, G, H. Chứng minh rằng tứ giác EFGH là hình bình hành.

Hướng dẫn trả lời:

Hướng dẫn trả lời:

Vì hai mặt phẳng (ABCD) và (A’B’C’D’) của hình hộp song song với nhau nên giao tuyến của mặt phẳng (EFGH) và hai mặt phẳng đó song song với nhau, tức là EF//GH

Vì hai mặt phẳng (AA’D’D) và (B’B’C’B) của hình hộp song song với nhau nên giao tuyến của mặt phẳng (EFGH) và hai mặt phẳng đó song song với nhau, tức là EH//GF

Tứ giác EFGH có: EF//GH, EH//GF nên tứ giác EFGH là hình bình hành.

4.35. Cho hình hộp ABCD.A’B’C’D’.

a) Xác định giao tuyến d của hai mặt phẳng (ADC’B’) và (A’D’CB).

b) Chứng minh rằng d // AD.

c) Chứng minh rằng d đi qua trung điểm của các đường chéo của hình hộp.

Hướng dẫn trả lời:

Hướng dẫn trả lời:

a) Gọi E là giao điểm của AB’ và A’B; gọi F là giao điểm của CD’ và C’D. Vì đường thẳng EF vừa thuộc cả hai mặt phẳng (ADC’B’) và (A’D’CB) nên EF là giao tuyến của hai mặt phẳng (ADC’B’) và (A’D’CB).

b) Hai mặt phẳng (ADC’B’) và (A’D’CB) chứa hai đường thẳng song song là AD và BC nên giao tuyến EF của hai mặt phẳng đó song song với AD.

c) Tứ giác ABCD và BCC’B’ là hình bình hành nên AD // BC, AD = BC và BC / /B’C’ và BC = B′C′, do đó ADC’B’ là hình bình hành.

Vì E, F lần lượt là trung điểm của AB’ và CD’ nên EF đi qua trung điểm của AC’. Vì các đường chéo của hình hộp cùng đi qua trung điểm của mỗi đường nên đường thẳng EF đi qua trung điểm các đường chéo đó.

4.36. Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng:

a) AB’//C’D’;      

b) Hai mặt phẳng (AB’D’) và (C’B’D) song song với nhau.

Hướng dẫn trả lời:

Hướng dẫn trả lời:

a) Tứ giác ABCD và BCC’B’ là hình bình hành nên AD // BC, AD = và BC // B’C’ và BC = B′C′, do đó ADC’B’ là hình bình hành nên AB’//C’D.

b) Vì AB’//C’D nên AB’ // mp(C’BD)

Chứng minh tương tự ta có: AD’ // BC’ nên AD’//mp(C’BD). Mặt phẳng (AB’D’) có hai đường thẳng cắt nhau AB’ và AD’ cùng song song với mp(C’BD) nên hai mặt phẳng (AB’D’) và (C’B’D) song song với nhau.

4.37. Cho ba mặt phẳng (P), (Q), (R) đôi một song song. Hai đường thẳng d, d’ cắt ba mặt phẳng lần lượt tại A, B, C và A’, B’, C’. Biết rằng AB = 2cm, BC = 6cm và A’B’ = 3cm, tính B’C

Hướng dẫn trả lời:

Vì ba mặt phẳng (P), (Q), (R) đôi một song song và hai đường thẳng d, d’ cắt ba mặt phẳng lần lượt tại A, B, C và A’, B’, C’ nên $\frac{AB}{BC}=\frac{A′B′}{B′C′}$ (định lí Thalès) 

Suy ra: $\frac{2}{6}=\frac{3}{B′C′} $

Do đó, $B′C′ = 3.\frac{6}{2}=9$ (cm)

4.38. Cho hình hộp ABCD.A’B’C’D’. Gọi O là giao điểm của các đường chéo của hình hộp. Mặt phẳng qua O và song song với mặt phẳng (ABCD) cắt các cạnh AA’, BB’, CC’, DD’ lần lượt tại M, N, P, Q.

a) Chứng minh rằng M, N, P, Q lần lượt là trung điểm của các cạnh AA’, BB’, CC’, DD’.

b) Chứng minh rằng ABCD.MNPQ là hình hộp.

Hướng dẫn trả lời:

Hướng dẫn trả lời:

a) Áp dụng định lí Thalès cho ba mặt phẳng (ABCD), (MNPQ), (A’B’C’D’) và hai cát tuyến AA’, DB’ ta có: $\frac{AM}{MA′}=\frac{DO}{OB′}$

Vì O là trung điểm của DB’ nên M là trung điểm của AA’.

Chứng minh tương tự ta có: N, P, Q lần lượt là trung điểm của BB’, CC’, DD’.

b) Vì M, N lần lượt là trung điểm của AA’, BB’ nên MN // AB, MN = AB

Tương tự ta có: PQ//CD và PQ = CD

Vì AB = CD và AB//CD nên MN = PQ và MN//PQ.

Do đó tứ giác MNPQ là hình bình hành.

Vì các đường thẳng AM, BN, CP, DQ đôi một song song nên suy ra ABCD.MNPQ là hình hộp.

4.39. Khi cắt một chiếc bánh gato hình hộp, Thúy nhận thấy vết cắt ở mặt trên và mặt dưới của bánh gợi nên hình ảnh về hai đường thẳng song song với nhau. Hỏi nhận xét của Thúy có đúng không? Vì sao?

Hướng dẫn trả lời:

Khi Thúy cắt bánh thì lưỡi dao di chuyển tạo thành một mặt phẳng cắt hai mặt trên và dưới của chiếc bánh. Vì mặt trên và mặt dưới của chiếc bánh song song với nhau nên các vết cắt (chính là giao tuyến của mặt phẳng cắt và hai mặt bánh) song song với nhau.

4.40. Một chiếc bình nước hình trụ được đặt trên bàn, lượng nước trong bình bằng đúng một nửa dung tích của bình. Hoàng đặt một chiếc ống hút vào trong bình sao cho cho một đầu của ống hút chạm vào đáy bình còn một đầu chạm vào miệng bình. Hoàng nói rằng độ dài của phần ống hút bị ướt bằng độ dài của toàn bộ ống hút. Hỏi Hoàng nói đúng hay sai? Vì sao?

Hướng dẫn trả lời:

Hoàng nói sai, theo định lí Thalès trong không gian thì độ dài của phần ống bị ướt bằng $\frac{1}{2}$ độ dài của toàn bộ ống hút.

Tìm kiếm google: Giải sách bài tập Toán học 11 Kết nối, Giải SBT Toán học 11 Kết nối, Giải sách bài tập Toán học 11 Kết nối Bài 13: Hai mặt phẳng song song

Xem thêm các môn học

Giải SBT toán 11 tập 1 kết nối tri thức


Copyright @2024 - Designed by baivan.net