1. 10. Không sử dụng máy tính, tính các giá trị lượng giác của góc $105^{o}$
Hướng dẫn trả lời:
$cos105^{o}=cos(60^{o}+45^{o})=cos60^{o}cos45^{o}-sin60^{o}sin45^{o}$
$=\frac{1}{2}.\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{2}.\frac{\sqrt{2}}{2}=\frac{\sqrt{2}-\sqrt{6}}{4}$
$sin105^{o}=sin(60^{o}+45^{o})=sin60^{o}cos45^{o}+cos60^{o}sin45^{o}$
$=\frac{\sqrt{3}}{2}.\frac{\sqrt{2}}{2}+\frac{1}{2}.\frac{\sqrt{2}}{2}=\frac{\sqrt{2}+\sqrt{6}}{4}$
$tan105^{o}=\frac{sin105^{o}}{cos105^{o}}=\frac{\sqrt{2}+\sqrt{6}}{\sqrt{2}-\sqrt{6}}$
$cot105^{o}=\frac{1}{tan105^{o}}=\frac{\sqrt{2}-\sqrt{6}}{\sqrt{2}+\sqrt{6}}$
1.11. Cho $cos2x=-\frac{4}{5}$ với $\frac{\pi}{4}<x<\frac{\pi}{2}$. Tính sinx, cosx, $sin(x+\frac{\pi}{3}), cos(2x-\frac{\pi}{4})$
Hướng dẫn trả lời:
Vì $\frac{\pi}{4}<x<\frac{\pi}{2}$ nên sinx > 0, cos x > 0 nên ta có:
$sin^{2}x=\frac{1-cos2x}{2}=\frac{1-(-\frac{4}{5})}{2}=\frac{9}{10}$ suy ra $sinx=\frac{3}{\sqrt{10}}$
$cox^{2}x=\frac{1+cos2x}{2}=\frac{1+(-\frac{4}{5})}{2}=\frac{1}{10}$ suy ra $cosx=\frac{1}{\sqrt{10}}$
Ta có: $sin2x = 2sinxcosx = 2.\frac{3}{\sqrt{10}}.\frac{1}{\sqrt{10}}=\frac{6}{10}=\frac{3}{5}$
$sin(x+\frac{\pi}{3})=sinxcos\frac{\pi}{3} + cosxsin\frac{\pi}{3}=\frac{3}{\sqrt{10}}.\frac{1}{2}+\frac{1}{\sqrt{10}}.\frac{\sqrt{3}}{2}=\frac{3+\sqrt{3}}{2\sqrt{10}}$
$cos(2x-\frac{\pi}{4})=cos2xcos\frac{\pi}{4}+sin2xsin\frac{\pi}{4}=(-\frac{4}{5}).\frac{\sqrt{2}{2}}+\frac{3}{5}.\frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{10}$
1.12. Chứng minh đẳng thức sau:
$sin^{4}a+cos^{4}a=1-\frac{1}{2}sin^{2}2a=\frac{3}{4}+\frac{1}{4}cos4a$
Hướng dẫn trả lời:
$sin^{4}a+cos^{4}a$
$=(sin^{2}a+cos^{2}a)^{2}-2sin^{2}acos^{2}a$
$=1-2.(\frac{sin2a}{2})^{2}$
$=1-\frac{1}{2}sin^{2}2a$
$=1-2(sinacosa)^{2}$
$=1-\frac{1}{2}.\frac{1-cos4a}{2}$
$=1-\frac{1-cos4a}{4}$
$=\frac{3}{4}+\frac{1}{4}cos4a$
1.13. Tính giá trị của các biểu thức sau:
a) $A=sin\frac{\pi}{9}-sin\frac{5\pi}{9}+sin\frac{7\pi}{9}$
b) $B=sin6^{o}sin42^{o}sin66^{o}sin78^{o}$
Hướng dẫn trả lời:
a) $A=sin\frac{\pi}{9}-sin\frac{5\pi}{9}+sin\frac{7\pi}{9}$
$=(sin\frac{\pi}{9}+sin\frac{7\pi}{9})-sin\frac{5\pi}{9}$
$=2sin\frac{\frac{\pi}{9}+\frac{7\pi}{9}}{2}.cos\frac{\frac{\pi}{9}-\frac{7\pi}{9}}{2}-sin\frac{5\pi}{9}$
$=2sin\frac{4\pi}{9}cos\frac{\pi}{3}-sin\frac{5\pi}{9}$
$=sin\frac{4\pi}{9}-sin\frac{5\pi}{9}$
$=sin(\pi-\frac{4\pi}{9})-sin\frac{5\pi}{9}$
$=sin\frac{5\pi}{9}-sin\frac{5\pi}{9}=0$
b) Vì $sin78^{o}=cos12^{o};sin66^{o}=cos24^{o};sin42^{o}=cos48^{o}$
nên $B=sin6^{o}cos12^{o}cos24^{o}cos48^{o}$
Ta có: $cos6^{o}.B=cos6^{o}. sin6^{o}cos12^{o}cos24^{o}cos48^{o}$
$=\frac{1}{2}sin12^{o}cos12^{o}cos24^{o}cos48^{o}$
$=\frac{1}{4}sin24^{o}cos24^{o}cos48^{o}$
$=\frac{1}{8}sin48^{o}cos48^{o}$
$=\frac{1}{16}sin96^{o}$
$=\frac{1}{16}sin(90^{o}+6^{o})$
$=\frac{1}{16}cos6^{o}$
Suy ra $B=\frac{1}{16}$
1.14. Chứng minh rằng:
a) $cosa-sina=\sqrt{2}cos(a+\frac{\pi}{4})$
b) $sina+\sqrt{3}cosa=2sin(a+\frac{\pi}{3})$
Hướng dẫn trả lời:
a) $cosa-sina=\sqrt{2}(a+\frac{\pi}{4})$
$=\sqrt{2}(cosacos\frac{\pi}{4}-sinasin\frac{\pi}{4})$
$=\sqrt{2}(\frac{\sqrt{2}}{2}cosa-\frac{\sqrt{2}}{2}sina)$
$=\sqrt{2}.\frac{\sqrt{2}}{2}(cosa-sina)$
$=cosa-sina$
b) $sina+\sqrt{3}cosa=2sin(a+\frac{\pi}{3})$
$=2sin(a+\frac{\pi}{3})$
$=2(sinacos\frac{\pi}{3}+cosasin\frac{\pi}{3})$
$=2(\frac{1}{2}sina+\frac{\sqrt{3}}{2}cosa)$
$=sina+\sqrt{3}cosa$
1.15. Chứng minh rằng trong mọi tam giác ABC ta đều có
$sinA+sinB+sinC=4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}$
Hướng dẫn trả lời:
Ta có: $sinA+sinB+sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}+2sin\frac{C}{2}cos\frac{C}{2}$
Mà $\hat{A}+\hat{B}+\hat{C}=\pi$ nên $\frac{A+B}{2}=\frac{\pi}{2}-\frac{C}{2}$
Suy ra: $sin\frac{A+B}{2}=cos\frac{C}{2}, sin\frac{C}{2}=cos\frac{A+B}{2}$
Ta có: $sinA+sinB+sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}+2sin\frac{C}{2}cos\frac{C}{2}$
$=2cos\frac{C}{2}cos\frac{A-B}{2}+2cos\frac{A+B}{2}cos\frac{C}{2}$
$=2cos\frac{C}{2}.2cos\frac{\frac{A-B}{2}+\frac{A+B}{2}}{2}.cos\frac{\frac{A-B}{2}-\frac{A+B}{2}}{2}$
$=4cos\frac{C}{2}cos\frac{A}{2}cos(-\frac{B}{2})$
$=4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}$