Khám phá 1: Cho vectơ $\vec{a}$. Hãy xác định độ dài và hướng của hai vectơ: $\vec{a}$ + $\vec{a}$, ($-\vec{a}$) + ($-\vec{a}$).
Trả lời:
|$\vec{a}$ + $\vec{a}$| = 2|$\vec{a}$|, vectơ $\vec{a}$ + $\vec{a}$ cùng hướng với vectơ $\vec{a}$
|$-\vec{a}$ + $-\vec{a}$| = 2|$-\vec{a}$|, vectơ $-\vec{a}$ + $-\vec{a}$ ngược hướng với $\vec{a}$.
Thực hành 1: Cho hai vectơ $\vec{a}$, $\vec{b}$ và một điểm M như Hình 3.
a) Hãy vẽ các vectơ $\vec{MN}$ = 3$\vec{a}$, $\vec{MP}$ = -3$\vec{b}$
b) Cho biết mỗi ô vuông có cạnh bằng 1. Tính: 3|$\vec{b}$|, |-3$\vec{b}$|, |2$\vec{a}$ + 2$\vec{b}$|.
Trả lời:
a)
b) |3$\vec{b}$| = |-3$\vec{b}$| = $3\sqrt{2}$
Ta có: |2$\vec{a}$ + 2$\vec{b}$| = 2|$\vec{a}$ + $\vec{b}$| = 2|$\vec{a'}$ + $\vec{b}$| = 2$\sqrt{2^{2} + (\sqrt{2})^2 + 2. 2. \sqrt{2}.cos45^{\circ}} = \sqrt{10}$
Thực hành 2: Cho tam giác ABC. Chứng minh G là trọng tâm của tam giác ABC khi và chỉ khi $\vec{MA}$ + $\vec{MB}$ + $\vec{MC}$ = 3$\vec{MG}$
Trả lời:
G là trọng tâm tam giác ABC
$\Leftrightarrow$ $\vec{GA}$ + $\vec{GB}$ + $\vec{GC}$ = $\vec{0}$
$\Leftrightarrow$ $\vec{MA}$ - $\vec{MG}$ + $\vec{MB}$ - $\vec{MG}$ + $\vec{MC}$ - $\vec{MG}$ = $\vec{0}$
$\Leftrightarrow$ $\vec{MA}$ + $\vec{MB}$ + $\vec{MC}$ - 3$\vec{MG}$ = $\vec{0}$
$\Leftrightarrow$ $\vec{MA}$ + $\vec{MB}$ + $\vec{MC}$ = 3$\vec{MG}$ (đpcm)
Thực hành: Một con tàu chở hàng A đang đi về hướng Tây với tốc độ 20 hải lí/giờ. Cùng lúc đó, một con tàu chở khách B đang đi về hướng đông với tốc độ 50 hải lí/giờ. Biếu diễn vectơ $\vec{b}$ của tàu B theo vectơ vận tốc $\vec{a}$ của tàu A.
Trả lời: $\vec{b}$ = -$\frac{5}{2}$$\vec{a}$
Khám phá 2: Cho hai vectơ $\vec{a}$ vfa $\vec{b}$ cùng phương, $\vec{b}$ khác $\vec{0}$ và cho $\vec{c}$ = $\frac{|$\vec{a}$|}{|$\vec{b}$|}$. $\vec{b}$. So sánh độ dài và hướng của hai vectơ $\vec{a}$ và $\vec{c}$.
Trả lời: Hai vectơ $\vec{a}$ và $\vec{c}$ cùng hướng với nhau.
Thực hành 3: Cho tứ giác ABCD có I và J lần lượt là trung điểm của AB và CD. Cho điểm G thỏa mãn $\vec{GA}$ + $\vec{GB}$ + $\vec{GC}$ + $\vec{GD}$ = $\vec{0}$. Chứng minh ba điểm I, G, J thẳng hàng.
Trả lời:
Ta có: $\vec{GA}$ + $\vec{GB}$ + $\vec{GC}$ + $\vec{GD}$ = $\vec{0}$
$\Leftrightarrow$ $\vec{IA}$ - $\vec{IG}$ + $\vec{IB}$ - $\vec{IG}$ + $\vec{JC}$ - $\vec{JG}$ + $\vec{JD}$ - $\vec{JG}$ = $\vec{0}$
$\Leftrightarrow$ ($\vec{IA}$ + $\vec{IB}$) - 2$\vec{IG}$ + ($\vec{JC}$ + $\vec{JD}$) - 2$\vec{JG}$ = $\vec{0}$
$\Leftrightarrow$ $\vec{0}$ - 2$\vec{IG}$ + $\vec{0}$ - 2$\vec{JG}$ = $\vec{0}$ ( vì I, J là trung điểm của AB, DC)
$\Leftrightarrow$ $\vec{IG}$ = - $\vec{JG}$
$\Rightarrow$ Ba điểm I, J, G thẳng hàng (đpcm).