Giải bài tập 8 trang 100 toán 10 tập 1 cánh diều

Bài 8. Cho hình bình hành $A B C D$ có $A B=4, A D=6$, $\widehat{B A D}=60^{\circ}$ (Hình 74).

a) Biểu thị các vectơ $\overrightarrow{B D}, \overrightarrow{A C}$ theo $\overrightarrow{A B}, \overrightarrow{A D}$.

b) Tính các tích vô hướng $\overrightarrow{A B} \cdot \overrightarrow{A D}, \overrightarrow{A B} \cdot \overrightarrow{A C}, \overrightarrow{BD} \cdot \overrightarrow{A C}$

c) Tính độ dài các đường chéo $B D, A C$.

Câu trả lời:

a) Áp dụng quy tắc hình bình hành:

$\overrightarrow{B D}=\overrightarrow{BA}+\overrightarrow{BC}=-\overrightarrow{AB}+\overrightarrow{AD}$

$\overrightarrow{A C}=\overrightarrow{AB}+\overrightarrow{AD}$

b) * $\overrightarrow{A B} \cdot \overrightarrow{A D}=4 \cdot 6 \cdot cos60^{\circ}=12$

*$\overrightarrow{A B} \cdot \overrightarrow{A C}=\overrightarrow{A B} \cdot (\overrightarrow{AD}+\overrightarrow{DC})=\overrightarrow{A B} \cdot \overrightarrow{A D}+(\overrightarrow{A B})^2=12+16=28$

$\overrightarrow{BD} \cdot \overrightarrow{A C}=(\overrightarrow{BC} +\overrightarrow{CD})(\overrightarrow{AD}+\overrightarrow{DC})=(\overrightarrow{AD} -\overrightarrow{AB})(\overrightarrow{AD}+\overrightarrow{AB})=(\overrightarrow{AD})^2+(\overrightarrow{AB})^2$

$=4^2+6^2=52$

c) Áp dụng định lí côsin:

$AC=\sqrt{AB^2+BC^2-2.AB.BC.cos120^{\circ}}=\sqrt{76}$

$BD=\sqrt{AB^2+AD^2-2.AB.AD.cos60^{\circ}}=\sqrt{28}$

Xem thêm các môn học

Giải toán 10 tập 1 cánh diều


Copyright @2024 - Designed by baivan.net