Xem hình 62.
Xem số đo của các góc $\widehat{DEB};\;\widehat{DFB}$ có quan hệ gì với số đo của các cung AmC hay DnB không?
Trả lời:
Theo em, số đo góc $\widehat{DEB}$ thì bằng nửa tổng số đo hai cung AmC và DnB.
Số đo góc $\widehat{DFB}$ thì bằng nửa hiệu số đo hai cung AmC và DnB.
1. Thực hiện các hoạt động sau để hiểu về góc có đỉnh ở bên trong đường tròn
a) Đọc và làm theo hướng dẫn (sgk trang 96)
b) Đọc, làm theo và trả lời các câu hỏi.
Xem hình 64 và cho biết:
c) Đọc kĩ nội dung sau (sgk trang 97)
d) Luyện tập, ghi vào vở
Xem hình 65 và cho biết góc nào không phải là góc có đỉnh ở bên trong đường tròn? Vì sao?
Xem hình 66, so sánh hai góc $\widehat{MVQ}$ và $\widehat{MQV}$
Hướng dẫn: sgk trang 97
Trả lời:
b)
Hình 64:
d) Trong hình 65, chỉ có hình 65b là hình có góc có đỉnh nằm trong đường tròn
2. Thực hiện các hoạt động sau để hiểu về góc có đỉnh ở bên ngoài đường tròn
a) Đọc và làm theo hướng dẫn (sgk trang 98)
b) Đọc, làm theo và trả lời các câu hỏi
Xem hình 68 và cho biết:
Xem hình 69 và cho biết:
Xem hình 70 và cho biết:
c) Đọc kĩ nội dung sau (sgk trang 99)
d) Luyện tập, ghi vào vở
Xem hình 71 và cho biết góc nào không phải là góc có đỉnh ở bên ngoài đường tròn? Vì sao?
Xem hình 72, biết AB = AC, so sánh hai góc $\widehat{ACM}$ và $\widehat{ASB}$.
Hướng dẫn: sgk trang 100.
Trả lời:
b)
Hình 68:
Hình 69:
Hình 70:
d) Trong hình 71: Góc $\widehat{QRx}$ ở hình 71b không phải là góc có đỉnh bên ngoài đường tròn.
Câu 4: Trang 102 toán VNEN 9 tập 2
Gọi (O; R) là đường tròn đi qua ba đỉnh của tam giác ABC. Gọi M, N, P tương ứng là trung điểm của các cạnh BC, CA, AB. OM cắt cung nhỏ BC tại D, ON cắt cung nhỏ CA tại E, OP cắt cung nhỏ AB tại F. Gọi I là giao điểm của AD và CF.
a) Chứng minh rằng: Hai dây AD và EF vuông góc với nhau.
b) Chứng minh rằng: DC = DI.
Trả lời:
a) Gọi Q là giao điểm của AD và EF.
Ta có: M, N, P lần lượt là trung điểm của BC, AC và AB nên D, E, F lần lượt là điểm chính giữa của các cung BC, cung AC, cung AB.
$\Rightarrow $ AD, BE, CF lần lượt là tia phân giác của các góc $\widehat{BAC};\;\widehat{ABC};\;\widehat{ACB}$
cung DE = cung DC + cung CE.
$sd DC = 2\widehat{A_1} = \widehat{BAC}$
$sd EC = 2\widehat{B_1} = \widehat{ABC}$
$\Rightarrow sd DE = \widehat{BAC} + \widehat{ABC}$ (2)
Từ (1) và (2) $\Rightarrow sd DE + sd AF = \widehat{ACB} + \widehat{BAC} + \widehat{ABC} = 180^\circ$ (tổng ba góc trong tam giác)
Lại có: $\widehat{AQF}$ là góc trong của (O; R) $\Rightarrow \widehat{AQF} = \frac{1}{2}(sd DE + sd AF) = \frac{180^\circ}{2} = 90^\circ$
$\Rightarrow $ AD vuông góc với EF tại Q
b) Xét tam giác $\bigtriangleup AIC$ có $\widehat{I_1} = \widehat{A_1} + \widehat{C_1}$ (tính chất góc ngoài). (1)
Ta có: $\widehat{ICD} = \widehat{C_2} + \widehat{C_3}$
Mà $\widehat{C_3} = \widehat{A_2}$(Góc nội tiếp cùng chắn cung BD) $= \widehat{A_1} $ (Do AD là tia phân giác góc BAC)
$\widehat{C_2} = \widehat{C_1}$ (Do CF là tia phân giác góc ACB)
$\Rightarrow \widehat{ICD} = \widehat{C_2} + \widehat{C_3} = \widehat{A_1} + \widehat{C_1}$ (2)
Từ (1) và (2) suy ra: Tam giác IDC cân tại D, hay ID = IC.
Câu 5: Trang 102 toán VNEN 9 tập 2
Cho đường tròn (O; R) có hai dây cung AD và BC song song với nhau, hơn nữa, hai dây cung AC và BD cắt nhau tại điểm E. Chứng minh rằng:
a) $\widehat{DBC} = \widehat{ACB}$
b) EB = EC
c) $\widehat{AOB} = \widehat{ADB} + \widehat{DAC}$
Trả lời:
TH1: Giao điểm E ở ngoài đường tròn
a) AD // CB $\Rightarrow sd AC = sd DB$
Ta có:
Từ (1) và (2) suy ra đpcm
b) Tương tự câu a) có: $\widehat{DAC} = \widehat{ADB}$ (*)
AD // CB suy ra: $\widehat{DAC} = \widehat{BCE}$; $\widehat{ADB} = \widehat{EBC}$;
$\Rightarrow \bigtriangleup EBC$ cân tại E hay EB = EC
c) $\widehat{AOB} = 2\widehat{ADB} = \widehat{ADB} + \widehat{DAC}$ (Theo (*))
TH2: Giao điểm E ở trong đường tròn
Chứng minh tương tự trường hợp 1.