Soạn mới giáo án Toán 11 CTST bài Chương 8 Bài 2: Đường thẳng vuông góc với mặt phẳng

Soạn mới Giáo án toán 11 CTST bài Đường thẳng vuông góc với mặt phẳng. Đây là bài soạn mới nhất theo mẫu công văn 5512. Giáo án soạn chi tiết, đầy đủ, trình bày khoa học. Tài liệu có bản word tải về. Hi vọng đây sẽ là tài liệu hữu ích để thầy cô tham khảo và nâng cao chất lượng giảng dạy. Mời thầy cô và các bạn kéo xuống tham khảo

Web tương tự: Kenhgiaovien.com - tech12h.com - Zalo hỗ trợ: nhấn vào đây

Rõ nét về file powerpoint trình chiếu. => Xem thêm

Ngày soạn: .../.../...

Ngày dạy: .../.../...

BÀI 2. ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG (3 TIẾT)

  1. MỤC TIÊU:
  2. Kiến thức, kĩ năng: Học xong bài này, HS đạt các yêu cầu sau:
  • Nhận biết được đường thẳng vuông góc với mặt phẳng.
  • Xác định được điều kiện để đường thẳng vuông góc với mặt phẳng.
  • Giải thích được định lí ba đường vuông góc.
  • Giải thích được mối liên hệ giữa tính song song và tính vuông góc của đường thẳng và mặt phẳng.
  • Nhận biết được khái niệm phép chiếu vuông góc.
  • Xác định được hình chiếu vuông góc của một điểm, một đường thẳng, một tam giác.
  • Vận dụng được kiến thức về đường thẳng vuông góc với mặt phẳng để mô tả một số hình ảnh trong thực tiễn.
  1. Năng lực

 Năng lực chung:

  • Năng lực tự chủ và tự học trong tìm tòi khám phá
  • Năng lực giao tiếp và hợp tác trong trình bày, thảo luận và làm việc nhóm
  • Năng lực giải quyết vấn đề và sáng tạo trong thực hành, vận dụng.

Năng lực riêng:

  • Tư duy và lập luận toán học: So sánh, phân tích dữ liệu, đưa ra lập luận trong quá trình khám phá, hình thành kiến thức, thực hành và vận dụng về đường thẳng vuông góc mặt phẳng; nhận biết các khái niệm, xác định điều kiện, giải thích tính chất của đường thẳng vuông góc với mặt phẳng.
  • Mô hình hóa toán học: Vận dụng được kiến thức về đường thẳng vuông góc với mặt phẳng để mô tả một số hình ảnh trong thực tiễn.
  • Giải quyết vấn đề toán học: Chứng minh đường thẳng vuông góc với mặt phẳng, xác định được ảnh của phép chiếu vuông góc.
  • Giao tiếp toán học: sử dụng các thuật ngữ, khái niệm, công thức, kí hiệu toán học trong trình bày, thảo luận, làm việc nhóm.
  • Sử dụng công cụ, phương tiện học toán.
  1. Phẩm chất
  • Có ý thức học tập, ý thức tìm tòi, khám phá và sáng tạo, có ý thức làm việc nhóm, tôn trọng ý kiến các thành viên khi hợp tác.
  • Chăm chỉ tích cực xây dựng bài, có trách nhiệm, chủ động chiếm lĩnh kiến thức theo sự hướng dẫn của GV.
  1. THIẾT BỊ DẠY HỌC VÀ HỌC LIỆU
  2. Đối với GV: SGK, Tài liệu giảng dạy, giáo án, đồ dùng dạy học.
  3. Đối với HS: SGK, SBT, vở ghi, giấy nháp, đồ dùng học tập (bút, thước...), bảng nhóm, bút viết bảng nhóm.

III. TIẾN TRÌNH DẠY HỌC

  1. HOẠT ĐỘNG KHỞI ĐỘNG (MỞ ĐẦU)
  2. a) Mục tiêu:

- Tạo hứng thú, thu hút HS tìm hiểu nội dung bài học.

  1. b) Nội dung: HS đọc tình huống mở đầu, suy nghĩ trả lời câu hỏi.
  2. c) Sản phẩm: HS trả lời được câu hỏi mở đầu.
  3. d) Tổ chức thực hiện:

Bước 1: Chuyển giao nhiệm vụ:

- GV yêu cầu HS đọc tình huống mở đầu:

Trong thực tế, người thợ xây dựng thường dùng dây dọi để xác định đường vuông góc với nền nhà. Thế nào là đường thẳng vuông góc với mặt phẳng?

 

Bước 2: Thực hiện nhiệm vụ: HS quan sát và chú ý lắng nghe, thảo luận nhóm đôi hoàn thành yêu cầu.

Bước 3: Báo cáo, thảo luận: GV gọi một số HS trả lời, HS khác nhận xét, bổ sung.

Bước 4: Kết luận, nhận định: GV đánh giá kết quả của HS, trên cơ sở đó dẫn dắt HS vào bài học mới.

  1. HÌNH THÀNH KIẾN THỨC MỚI

Hoạt động 1: Đường thẳng vuông góc với mặt phẳng

  1. a) Mục tiêu:
  • Nhận biết được đường thẳng vuông góc với mặt phẳng.
  • Xác định được điều kiện để đường thẳng vuông góc với mặt phẳng.
  1. b) Nội dung:

 HS đọc SGK, nghe giảng, thực hiện các nhiệm vụ được giao, suy nghĩ trả lời câu hỏi, thực hiện các hoạt động.

  1. c) Sản phẩm: HS hình thành được kiến thức bài học, câu trả lời của HS cho các câu hỏi.
  2. d) Tổ chức thực hiện:

HĐ CỦA GV VÀ HS

SẢN PHẨM DỰ KIẾN

Bước 1: Chuyển giao nhiệm vụ:

- GV yêu cầu HS suy nghĩ trả lời HĐKP 1.

- GV giới thiệu về khái niệm đường thẳng vuông góc với mặt phẳng.

 

 

 

 

 

 

 

 

- HS quan sát Ví dụ 1 để thấy hình ảnh đường thẳng vuông góc với mặt phẳng trong thực tiễn.

+ HS lấy thêm một vài ví dụ trog thực tiễn.

- HS suy nghĩ, thảo luận nhóm đôi thực hiện Phiếu bài tập, trả lời HĐKP 2.

 

- Từ kết quả HĐKP 2: Nhận thấy nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b trong mặt phẳng (P) thì d có vuông góc với đường thẳng c bất kì trong (P) hay không?

Ta có định lí quan trọng trong việc chỉ ra 1 đường thẳng vuông góc với mặt phẳng.

- HS khái quát định lí.

+ GV nhấn mạnh: định lí thường sử dụng để chứng minh đường thẳng vuông góc với mặt phẳng.

 

- HS trình bày, giải thích Ví dụ 2.

- HS thảo luận nhóm đôi trả lời HĐKP 3 (làm vào Phiếu bài tập).

+ a) Dựa vào định lí 1.

+ b) dựa vào tính chất  nhận xét tính chất của  với

- Từ kết quả HĐKP 3, nhận xét:

+ Có bao nhiêu mặt phẳng đi qua một điểm O và vuông góc với đường thẳng d cho trước?

+ Có bao nhiêu đường thẳng d đi qua điểm O và vuông góc với mặt phẳng (P) cho trước?

- HS khái quát, nêu định lí 2.

 

 

 

 

 

- HS giải thích Ví dụ 3, làm Thực hành 1, Vận dụng 1.

+ Thực hành 1: theo đề bài , thì SA vuông góc với các đường nào? Kết hợp hình vuộng ABCD. Sử dụng điều đó chứng minh bài toán.

+ b) Nhận thấy các tính chất HK // BD, qua đó để chứng minh có thể chứng minh

Phát hiện  thuộc mặt phẳng nào có thể vuông góc với BD?

+ Vận dụng 1: HS vận dụng định lí 1, 2 để trả lời câu hỏi.

Bước 2: Thực hiện nhiệm vụ:

- HS theo dõi SGK, chú ý nghe, tiếp nhận kiến thức, hoàn thành các yêu cầu, thảo luận nhóm.

- GV quan sát hỗ trợ.

Bước 3: Báo cáo, thảo luận:

- HS giơ tay phát biểu, lên bảng trình bày

- Một số HS khác nhận xét, bổ sung cho bạn.

Bước 4: Kết luận, nhận định: GV tổng quát lưu ý lại kiến thức trọng tâm và yêu cầu HS ghi chép đầy đủ vào vở.

1. Đường thẳng vuông góc với mặt phẳng

HĐKP 1:

a)  vuông góc với ,

b) Dây dọi vuông góc với mọi đường thẳng trong mặt phẳng sàn nhà.

Định nghĩa

Đường thẳng  gọi là vuông góc với mặt phẳng  nếu nó vuông góc với mọi đường thẳng  nằm trong , kí hiệu .

Ví dụ 1 (SGK -tr.57)

 

 

 

HĐKP 2

a) Tam giác  và tam giác  có  là cạnh chung nên  (c.c.c).

b) Tam giác  cân tại , suy ra  vuông góc với , suy ra .

Định lí 1:

Nếu đường thẳng  vuông góc với hai đường thẳng cắt nhau  và  cùng nằm trong mặt phẳng  thì .

 

 


Ví dụ 2 (SGK -tr.58)

HĐKP 3

a) vuông góc với

b) Ta có:

   vuông góc với

Định lí 2:

Có duy nhất một mặt phẳng đi qua một điểm và vuông góc với một đường thẳng cho trước.

Có duy nhất một đường thẳng đi qua một điểm và vuông góc với một mặt phẳng cho trước.

Ví dụ 3 (SGK -tr.58)

Thực hành 1

a) Ta có  và , suy ra  (SAB).

Ta có  và , suy ra .

b) Ta có  và , suy ra  ( .

Mặt khác, ta có , suy ra , suy ra .

Vận dụng 1

Dựng cột chống vuông góc với hai đoạn thẳng cắt nhau nằm trên sàn nhà.

 

PHIẾU BÀI TẬP

1. HĐKP 2:

Cho đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b trong mặt phẳng (P). Xét một đường thẳng c bất kì trong (P) (c song song với a và b). Gọi O là giao điểm của d và (P). Trong (P) vẽ qua O ba đường thẳng a', b', c' lần lượt song song với a, b, c. Vẽ một đường thẳng cắt a', b', c' lần lượt tại B, C, D. Trên d lấy hai điểm E, F sao cho O là trung điểm của EF (Hình 4)

a) Giải thích tai sao hai tam giác CEB và CFB bằng nhau

b) Có nhận xét gì về tam giác DEF? Từ đó suy ra góc giữa d và c.

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

Nhận xét: (Điền vào chỗ chấm để được một nhận xét đúng dựa vào HĐKP 2)

2. HĐKP 3

a) Trong không gian, cho điểm O và đường thẳng d. Gọi a, b là hai đường thẳng phân biệt đi qua O và vuông góc với d (Hình 6a). Có nhận xét gì về vị trí tương đối giữa đường thẳng d và mp(a,b)?

b) Trong không gian, cho điểm O và mặt phẳng (P). Gọi (Q) và (R) là hai mặt phẳng đi qua O và lần lượt vuông góc với hai đường thẳng cắt nhau a,b nằm trong (P) (Hình 6b). Có nhận xét gì về vị trí giữa mặt phẳng (P) và giao tuyến d của (Q), (R)?

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

 

 

Hoạt động 2: Liên hệ giữa tính song song và tính vuông góc của đường thẳng và mặt phẳng.

  1. a) Mục tiêu:
  • Giải thích được mối liên hệ giữa tính song song và tính vuông góc của đường thẳng và mặt phẳng.
  • Vận dụng được liên hệ tính chất song song và tính vuông góc của đường thẳng và mặt phẳng để chứng minh mệnh đề, áp dụng các bài toán yếu tố thực tế.
  1. b) Nội dung: HS đọc SGK để tìm hiểu nội dung kiến thức theo yêu cầu của GV, chú ý nghe giảng, thực hiện các hoạt động.
  2. c) Sản phẩm: HS hình thành được kiến thức bài học về, câu trả lời của HS cho các câu hỏi.
  3. d) Tổ chức thực hiện:

HOẠT ĐỘNG CỦA GV VÀ HS

SẢN PHẨM DỰ KIẾN

Bước 1: Chuyển giao nhiệm vụ:

- GV yêu cầu HS suy nghĩ quan sát làm HĐKP 4.

 

 

- Từ đó ta có một số định lí về mối liên hệ giữa tính song song và vuông góc của đường thẳng và mặt phẳng.

 

 

 

 

 

 

- Áp dụng định lí 3, HS giải thích Ví dụ 4.

- Áp dụng định lí 4, HS giải thích Ví dụ 5.

 

 

 

 

 

 

 

- HS vận dụng định lí làm Thực hành 2.

 

 

 

 

- GV dẫn dắt HS tìm hiểu Định lí 5, có thể chứng minh

+ Nếu //( thì tồn tại  //  Khi đó  nên

- HS áp dụng định lí 5, giải thích Ví dụ 6.

 

 

 

- HS làm Thực hành 3, Vận dụng 2.

Bước 2: Thực hiện nhiệm vụ:

- HS theo dõi SGK, chú ý nghe, tiếp nhận kiến thức, suy nghĩ trả lời câu hỏi, hoàn thành các yêu cầu.

- GV: quan sát và trợ giúp HS.

Bước 3: Báo cáo, thảo luận:

- HS giơ tay phát biểu, lên bảng trình bày

- Một số HS khác nhận xét, bổ sung cho bạn.

Bước 4: Kết luận, nhận định: GV tổng quát lưu ý lại kiến thức trọng tâm và yêu cầu HS ghi chép đầy đủ vào vở.

2. Liên hệ giữa tính song song và tính vuông góc của đường thẳng và mặt phẳng

HĐKP 4

a) Hai thân cây song song;

b) Mặt đất song song với mặt bàn;

c) Thanh xà song song với mặt sàn nhà.

Định lí 3

a) Cho hai đường thẳng song song. Mặt phẳng nào vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng kia.

b) Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau.


Ví dụ 4 (SGK -tr.60)

Định lí 4

a) Cho hai mặt phẳng song song. Đường thẳng nào vuông góc với mặt phẳng này thì cũng vuông góc với mặt phẳng kia.
b) Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.

Ví dụ 5 (SGK -tr.61)

Thực hành 2

a) Ta có:  ; ,

suy ra .

b)  và , suy ra .

Ta lại có , suy ra .

Định lí 5

a) Cho đường thẳng  song song với mặt phẳng . Đường thẳng nào vuông góc với  thì cũng vuông góc với .

b) Nếu đường thẳng  và mặt phẳng  (không chứa  ) cùng vuông góc với một đường thẳng  thì chúng song song với nhau.

Ví dụ 6 (SGK -tr.61)

Thực hành 3

a) Tam giác SAB có MN là đường trung bình nên MN//SA

Mà   nên   Suy ra 

Hình thang ABCD có NP là đường trung bình nên NP//BC//AD. Mà   nên 

Ta có AB vuông góc với hai đường thẳng MN và NP cắt nhau cùng thuộc (MNPQ) nên 

b) Vì   nên 

Tam giác SBC có MQ là đường trung bình nên MQ//BC. Mà SA⊥BC nên SA⊥MQ

Ta có MQ vuông góc với hai đường thẳng SA và AB cắt nhau cùng thuộc (SAB) nên MQ⊥(SAB).

Vận dụng 2

Dùng êke để kiểm tra tính vuông góc giữa trụ chống với hai đường cắt nhau trên tấm gỗ.

Hoạt động 3: Phép chiếu vuông góc.

  1. a) Mục tiêu:
  • Nhận biết được khái niệm phép chiếu vuông góc.
  • Xác định được hình chiếu vuông góc của một điểm, một đường thẳng, một tam giác.
  1. b) Nội dung:

 HS đọc SGK, nghe giảng, thực hiện các nhiệm vụ được giao, suy nghĩ trả lời câu hỏi, thực hiện các hoạt động.

  1. c) Sản phẩm: HS hình thành được kiến thức bài học, câu trả lời của HS cho các câu hỏi.
  2. d) Tổ chức thực hiện:

HĐ CỦA GV VÀ HS

SẢN PHẨM DỰ KIẾN

Bước 1: Chuyển giao nhiệm vụ:

- GV yêu cầu HS quan sát, suy nghĩ, trả lời HĐKP 5.

- GV cho HS nhắc lại; Thế nào là phép chiếu song song theo phương

Giới thiệu: nếu phương chiếu vuông góc với mặt phẳng chiếu, thì đó gọi là phép chiếu vuông góc.

- HS phát biểu lại khái niệm phép chiếu vuông góc.

 

 

 

 

- HS đọc, trình bày Ví dụ 7, tương tự làm Thực hành 4.

+ Để tìm hình chiếu của điểm lên mặt phẳng, ta xác định đường thẳng qua điểm đó và vuông góc mặt phẳng. Rồi tìm giao điểm giữa đường thẳng và mặt chiếu.

+ Để tìm ảnh của đường thẳng qua phép chiếu vuông góc ta xác định ít nhất hai ảnh của hai điểm trên đường thẳng đó lên mặt chiếu.

+ Tương tự tìm ảnh của tam giác xác định ảnh của đỉnh tam giác.

- GV chú ý cho HS về phép chiếu vuông góc

+ Có tính chất của phép chiếu song song.

+ Cách gọi tên về phép chiếu lên (P) và hình chiếu của hình (H).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- HS thực hiện HĐKP 6.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Từ kết quả của HĐKP 6, ta có mối quan hệ giữa hai đường thẳng a, b và đường thẳng b’ là hình chiếu vuông góc của b lên mặt phẳng chứa a.

 

 

 

 

 

 

 

 

 

 

- Áp dụng định lí đã học trình bày Ví dụ 8, Thực hành 5, Vận dụng 3.

+ Thực hành 5: chứng minh thì ta xác định AH là hình chiếu vuông góc của đường thẳng nào lên mặt phẳng (ABC), có thể sử dụng đinh lí ba đường vuông góc. Hoặc chứng minh theo đường thẳng BC vuông góc mặt phẳng chứa AH.

+ Vận dụng 3: xác định hình chiếu théo phương vuông góc.

Bước 2: Thực hiện nhiệm vụ:

- HS theo dõi SGK, chú ý nghe, tiếp nhận kiến thức, hoàn thành các yêu cầu, thảo luận nhóm.

- GV quan sát hỗ trợ.

Bước 3: Báo cáo, thảo luận:

- HS giơ tay phát biểu, lên bảng trình bày

- Một số HS khác nhận xét, bổ sung cho bạn.

Bước 4: Kết luận, nhận định: GV tổng quát lưu ý lại kiến thức trọng tâm và yêu cầu HS ghi chép đầy đủ vào vở.

3. Phép chiếu vuông góc

HĐKP 5

Đường thẳng MM’ vuông góc với mặt sàn.

Định nghĩa

Cho mặt phẳng  và đường thẳng  vuông góc với . Phép chiếu song song theo phương của  lên mặt phẳng  được gọi là phép chiếu vuông góc lên .

Ví dụ 7 (SGK -tr.62)

Thực hành 4

+) Vì   nên 

Ta có:   nên

Vậy hình chiếu vuông góc của C lên (SAB) là điểm B

+) Ta có:   nên

Vậy hình chiếu vuông góc của D lên (SAB) là điểm A

Suy ra hình chiếu vuông góc của CD lên (SAB) là AB; hình chiếu vuông góc của tam giác SCD lên (SAB) là tam giác SAB.

Chú ý:

a) Phép chiếu vuông góc lên một mặt phẳng là một trường hợp đặc biệt của phép chiếu song song nên có đầy đủ các tính chất của phép chiếu song song.

b) Người ta còn dùng “phép chiếu vuông góc lên (P)” và dùng  là hình chiếu  trên thay cho  là hình chiếu vuông góc của  trên

*) Định lí ba đường vuông góc

HĐKP 6

a)  đi qua hai điểm  và ;

b)

i) Ta có: (do

   vuông góc với ;

ii)  vuông góc với ;

c)

i) Ta có: (do

   vuông góc với ;

ii)  vuông góc với .

Định lí 6

Cho đường thẳng  nằm trong mặt phẳng  và  là đường thẳng không nằm trong  và không vuông góc với . Gọi  là hình chiếu vuông góc của  trên . Khi đó  vuông góc với  khi và chỉ khi  vuông góc với .

Ví dụ 8 (SGK -tr.63)

Thực hành 5

Vì   nên   Suy ra 

 nên AH là hình chiếu vuông góc của OA trên (ABC).

Lại có

Suy ra  .

Vận dụng 3

Buộc hai dây dọi vào hai đầu A, B của đoạn thẳng AB. Đánh dấu điểm A’ và B’ là chỗ hai quả dọi tiếp đất. Ta có A’B’ là hình chiếu của AB.

Soạn mới giáo án Toán 11 CTST bài Chương 8 Bài 2: Đường thẳng vuông góc với mặt phẳng

Nâng cấp lên tài khoản VIP để tải tài liệu và dùng thêm được nhiều tiện ích khác


Từ khóa tìm kiếm: giáo án toán 11 chân trời mới, soạn giáo án toán 11 chân trời bài Đường thẳng vuông góc với mặt phẳng, giáo án toán 11 chân trời

Soạn giáo án toán 11 chân trời sáng tạo


Copyright @2024 - Designed by baivan.net

Chat hỗ trợ
Chat ngay